<progress id="hpfzt"><pre id="hpfzt"></pre></progress>
        <ruby id="hpfzt"></ruby>
        <big id="hpfzt"><p id="hpfzt"></p></big>

        <progress id="hpfzt"></progress>

        <big id="hpfzt"><pre id="hpfzt"></pre></big>

        <i id="hpfzt"></i>

            <strike id="hpfzt"><video id="hpfzt"><ins id="hpfzt"></ins></video></strike>
            <dl id="hpfzt"></dl>
                Mirror operated in collaboration with local support
                Full-text links:

                Download:

                Current browse context:

                q-bio.CB

                Change to browse by:

                References & Citations

                Bookmark

                (what is this?)
                CiteULike logo BibSonomy logo Mendeley logo Facebook logo LinkedIn logo del.icio.us logo Digg logo Reddit logo ScienceWISE logo

                Quantitative Biology > Cell Behavior

                Title: Immunological determinants of clinical outcomes in COVID-19: A quantitative perspective

                Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a variable clinical presentation that ranges from asymptomatic, to severe disease with cytokine storm. The mortality rates also differ across the globe, ranging from 0.5-13%. This variation is likely due to both pathogen and host factors. Host factors may include genetic differences in the immune response genes as well as variation in HLA and KIR allotypes. To better understand what impact these genetic variants in immune response genes may have in the differences observed in the immune response to SARS-CoV-2, a quantitative analysis of a dynamical systems model that considers both, the magnitude of viral growth, and the subsequent innate and adaptive response required to achieve control of infection is considered. Based on this broad quantitative framework it may be posited that the spectrum of symptomatic to severely symptomatic presentations of COVID19 represents the balance between innate and adaptive immune responses. In asymptomatic patients, prompt and adequate adaptive immune response quells infection, whereas in those with severe symptoms a slower inadequate adaptive response leads to a runaway cytokine cascade fueled by ongoing viral replication. Polymorphisms in the various components of the innate and adaptive immune response may cause altered immune response kinetics that would result in variable severity of illness. Understanding how this genetic variation may alter the response to SARS-CoV-2 infection is critical to develop successful treatment strategies.
                Comments: 36 pages, 1 table, 5 figures
                Subjects: Cell Behavior (q-bio.CB)
                Cite as: arXiv:2005.06541 [q-bio.CB]
                  (or arXiv:2005.06541v2 [q-bio.CB] for this version)

                Submission history

                From: Elizabeth Krieger [view email]
                [v1] Wed, 13 May 2020 19:17:27 GMT (1487kb)
                [v2] Tue, 19 May 2020 12:20:20 GMT (1487kb)
                ƴϷ