<progress id="hpfzt"><pre id="hpfzt"></pre></progress>
        <ruby id="hpfzt"></ruby>
        <big id="hpfzt"><p id="hpfzt"></p></big>

        <progress id="hpfzt"></progress>

        <big id="hpfzt"><pre id="hpfzt"></pre></big>

        <i id="hpfzt"></i>

            <strike id="hpfzt"><video id="hpfzt"><ins id="hpfzt"></ins></video></strike>
            <dl id="hpfzt"></dl>
                Mirror operated in collaboration with local support
                Full-text links:

                Download:

                Current browse context:

                math.OC

                Change to browse by:

                References & Citations

                Bookmark

                (what is this?)
                CiteULike logo BibSonomy logo Mendeley logo Facebook logo LinkedIn logo del.icio.us logo Digg logo Reddit logo ScienceWISE logo

                Computer Science > Computer Science and Game Theory

                Title: Fast Complete Algorithm for Multiplayer Nash Equilibrium

                Authors: Sam Ganzfried
                Abstract: We describe a new complete algorithm for computing Nash equilibrium in multiplayer general-sum games, based on a quadratically-constrained feasibility program formulation. We demonstrate that the algorithm runs significantly faster than the prior fastest complete algorithm on several game classes previously studied and that its runtimes even outperform the best incomplete algorithms.
                Subjects: Computer Science and Game Theory (cs.GT); Artificial Intelligence (cs.AI); Multiagent Systems (cs.MA); Theoretical Economics (econ.TH); Optimization and Control (math.OC)
                Cite as: arXiv:2002.04734 [cs.GT]
                  (or arXiv:2002.04734v6 [cs.GT] for this version)

                Submission history

                From: Sam Ganzfried [view email]
                [v1] Tue, 11 Feb 2020 23:42:14 GMT (12kb)
                [v2] Fri, 14 Feb 2020 19:14:48 GMT (12kb)
                [v3] Fri, 22 May 2020 06:00:01 GMT (12kb)
                [v4] Tue, 26 May 2020 01:59:58 GMT (11kb)
                [v5] Fri, 5 Jun 2020 21:23:10 GMT (11kb)
                [v6] Mon, 27 Jul 2020 05:49:22 GMT (11kb)
                ƴϷ